Carbanion induced synthesis of annulated unsymmetrical biaryls through ring transformation of 2*H*-pyran-2-one[†]

Vishnu Ji Ram,* Nidhi Agarwal, Abhishek S. Saxena, Farhanullah, Ashoke Sharon and Prakas R. Maulik‡

Division of Medicinal Chemistry and Molecular & Structural Biology, Central Drug Research Institute, Lucknow-226001, India. E-mail: vjiram@yahoo.com; Fax: 91-0522-223405

Received (in Cambridge, UK) 10th April 2002, Accepted 19th April 2002 First published as an Advance Article on the web 23rd May 2002

An innovative and convenient one-pot synthesis of unsymmetrical macrocyclic biaryls (3, 5 and 8), dibenzo[a,c]cycloheptenes (10), 3,4-dihydro-2(1H)-naphthones (15), tetrahydroisoquinolines (18), dihydro-1H-isothiochromenes (20), benzo[c]thiochromenes (22) and 2,3-dihydro-1-benzothiophenes (24) is described. These compounds are obtained through base-catalyzed ring transformation reactions of suitably functionalized 2H-pyran-2-ones (1,6) by a carbanion, generated from cycloalkanone (2,4,7), benzosuberone (9), cyclohexanedione monoketal (12), 4-piperidone (17), tetrahydrothiopyran-4-one (19), thiochroman-4-one (21) or tetrahydrothiophene-3-one (23).

Introduction

The need for an efficient and convenient synthesis for unsymmetrical biaryls has always been both a fascinating and a challenging undertaking in natural product chemistry. Arenes and annulated arenes with electron donor and acceptor substituents are recognized as molecular subunits for the expression of non-linear optical properties due to their high polarisability.¹ These compounds besides exhibiting optical properties, also display diverse pharmacological activities²⁻⁶ and are useful as chiral reagents,⁷ as chiral host molecules for inclusion compounds⁸ and as chiral phases for chromatography.⁹

Despite the numerous procedures known for the synthesis of macrocyclic biaryls, dibenzo[a,c]cycloheptenes, tetrahydronaphthalene-2-one 2,2-dimethyltrimethylene ketals, 8-aryl-2(1H)-naphthones, 8-aryltetrahydroisoquinolines, 8-arylisochromenes, benzo[c]thiochromenes and 7-aryl-2,3dihydrobenzo[b]thiophenes, many of them are of limited use due to the harshness or functional group intolerance of the conditions required.

We report here a methodology which permits direct access to diversely substituted biaryls, based upon carbocyclic, heterocyclic (tetrahydroisoquinolines, isothiochromenes) and macrocyclic ring systems.

Results and discussion

Our approach to the one-pot synthesis of biaryl systems of the type aryl-aryl, and aryl-heteroaryl is entirely different to those described in the Introduction and is based on the ring transformation reactions of 6-aryl-3-methoxycarbonyl-4methylsulfanyl-2*H*-pyran-2-one (1), and 6-aryl-4-*sec*-amino-3-cyano-2*H*-pyran-2-one ¹⁰ (6), by carbanions generated from cycloalkanone (2, 4 or 7), benzosuberone§ (9), cyclohexane-

† Central Drug Research Institute communication no. 6207

dione monoketal (12), 4-piperidone (17), tetrahydrothiopyran-4-one (19), thiochroman-4-one (21) and tetrahydrothiophen-3-one (23).

The 6-aryl-3-methoxycarbonyl-4-methylsulfanyl-2H-pyran-2-one (1), and 6-aryl-4-*sec*-amino-3-cyano-2H-pyran-2-one (6) may be considered as cyclic pyran derivatives (1) and cyclic enone derivatives (2) respectively, with three electrophilic centres C-2, C-4, and C-6 in their molecular make-up, in which the latter is highly susceptible to nucleophilic attack due to extended conjugation and the presence of electron withdrawing substituents at the 3 positions.

[n]Orthocyclophanes can be considered as annulated macrocycles and have been previously synthesized,11 either by condensation of α -hydroxymethylenecyclohexanone with acetone dicarboxylic acid ester, by a Diels-Alder reaction¹² of 2H-cycloalka[b]pyran-2-one with an acetylene derivative or by heating with enamine above 200 °C. Base-catalyzed isomerization ¹³ of cycloalkadiyne at 160 °C and thermal isomerization of [n]paracyclophanes also led to ^{14,15} [n]orthocyclophanes but in poor yields. Previously, compounds containing the dibenzo[a,c]cycloheptene ring system have been prepared starting from phenanthrene,¹⁶ by pyrolysis of 1,2:3,4 dibenzotropilidine§17 or from biphenyl-5-propionic acid 18 albeit in poor yields. Recently, derivatives of the dibenzo[a,c]cycloheptene ring system such as 6-methyl- and 6-phenyl-5*H*-dibenzo[a,c]cycloheptenes have been obtained¹⁹ from reaction of either MeLi or PhLi with dibenzotropolone§.

We report herein a novel synthesis for the annulated macrocycles (3 and 5) and dibenzo[a,c]cycloheptene (10) from the reaction of 1 with macrocyclic ketones (2 and 4) and benzo-suberone (9), respectively. Moderate yields were obtained. Analogously, a reaction of cyclic enone derivatives (6) with alicyclic ketone (7) also yielded benzocycloalkenes (8) (see Schemes 1–3).

Among the various approaches known for the synthesis²⁰ of 3,4-dihydro-2(1*H*)-naphthone (**15**), reductive transformation of suitably functionalized 2-methoxynaphthalene derivatives is the most common. The 1-alkyl and 1-aryl derivatives of 2(1H)-naphthone have been obtained²¹ by hydroboration of 1-alkyl- or 1-aryl-3,4-dihydronaphthalene followed by chromic acid oxidation. These compounds have also been obtained²² either by acid hydrolysis of epoxy amides derived

[‡] For crystallographic queries.

[§] The IUPAC name for benzosuberone is 6,7,8,9-tetrahydro-5*H*-benzocyclohepten-5-one. The IUPAC name for 1,2:3,4-dibenzo-tropilidine is 5*H*-dibenzo[*a,c*]cycloheptene. The IUPAC name for dibenzotropolone is 5-hydroxydibenzo[*a,c*]cyclohepten-6-one and the IUPAC name for 1-tetralone is 3,4-dihydro-1-(2*H*)-naphthone.

Scheme 1

Scheme 2

Scheme 3

from 1-tetralone§ or by reductive cyclization of 5-(4methoxyphenyl)hexan-2-one²³ followed by dehydrogenation and subsequent reduction. Recently, derivatives of this ring system have been synthesized²⁴ either through carbopalladation of aryl nitriles or $InCl_3$ promoted rearrangement²⁵ of epoxide derived from 3,4-dihydronaphthalene. The latest concise synthesis of 1-substituted-2(1*H*)-naphthone has been reported²⁶ and is achieved by selective dehydration of 1,2-dihydroxy-1,2,3,4-tetrahydronaphthalene.

Our strategy to prepare derivatives of this ring system was based on the reaction of pyran-2-ones (1, 6) with cyclohexane-1,4-dione mono-2,2-dimethyltrimethylene ketal (12) separately. The isolated tetrahydronaphthalen-2-one 2,2-dimethyltrimethylene ketals (14) on hydrolysis with formic acid produced 3,4-dihydro-2-(1H)-naphthones (15) (see Scheme 4).

The Pictet–Spengler reaction²⁷ is commonly used for the synthesis of tetrahydroisoquinoline but the disadvantage of not having regiochemical control has led to modifications of this approach^{28,29} in order to obtain regioselectivity. We report herein the synthesis of the highly functionalized tetrahydroisoquinoline (**18**) through ring transformation of 2*H*-pyran-2-one (**6**) from *N*-substituted-4-piperidone (**17**) (see Scheme 5).

1H-Isothiochromenes have previously been prepared either from reaction of benzylmercaptans and haloacetic acid followed by Friedel-Crafts cyclization^{30,31} or by treating homoxylene dibromide with potassium sulfide.32 These compounds have also been prepared³³ photochemically from reaction of thiobenzophenone and propiolic acid. The synthesis of the 6H-benzo[c]thiochromene ring system has previously been reported to occur via Pschorr cyclization 34 and Pummerer rearrangement. Alternatively these compounds have been obtained ³⁵ either photochemically from a range of benzyl alcohols or from reaction³⁶ of 4-substituted-bis(3-alkoxybenzoyl) peroxide and phenol. 2,3-Dihydro-1-benzothiophenes have been synthesized³⁷ either by ring contraction of cis-3-bromo-7-chloro-3,4-dihydro-2H-benzothiopyran-4-ol or reductive ring opening of 6a,11a-dihydrobenzothieno[3,2-c]benzopyrans³⁸ with LiAlH₄.

We have prepared 3,4-dihydroisothiochromene (20), benzo[c]-thiochromenes (22) and 2,3-dihydrobenzothiophenes (24) through ring transformation of 2*H*-pyran-2-one (13) from heterocyclic ketones (19, 21, 23) which were used as the source of carbanions (see Scheme 6).

In all the ring transformation reactions an equimolar mixture of 2H-pyran-2-one (1,6), an alicyclic or heterocyclic ketone and powdered KOH in DMF was stirred at ambient temperature for 30–40 h. After pouring the reaction mixture into ice–water,

Scheme 4

the solution was neutralized with 10% HCl and the product obtained was purified by chromatography using silica. The initial step in the ring transformation reactions is possibly the attack of the carbanion at position 6 of the pyran ring (1,6), followed by condensation between the keto group and activated methylene to form annulated biaryls. Our approach to the construction of unsymmetrical biaryls is superior in respect to (a) versatility and compatibility, (b) mild reaction conditions, (c) use of inexpensive reagents and (d) easy work-up. This procedure opens a new avenue for a convenient one pot synthesis of unsymmetrical biaryls (see Schemes 1–6), using economical reagents.

All the synthesized compounds were characterized by spectroscopic techniques and satisfactory elemental analyses for C, H and N ($\pm 0.4\%$) were obtained. The structures of **8f** and **14k** were further confirmed by single crystal X-ray diffraction.³⁹ The molecular structure of **8f** (Fig. 1) shows that the equatorially

Fig. 1 ORTEP diagram showing the structure of 8f with numbering scheme.

Scheme 6

substituted planar phenyl ring (C) is twisted with respect to the central planar A ring by $89.5(2)^{\circ}$. The pyrrolidine ring (B) adopts a distorted envelope conformation. The macrocyclic ring (D) is fused to the central ring (A) at the C2–C3 junction and is puckered to adopt a long chair-type conformation (atoms C16, C17 are above and C3, C12, C21, C2 are below the least-squares planes through atoms C13, C14, C15, C18, C19 and C20).

The ORTEP diagram of 14k (Fig. 2) shows the conformation and molecular structure along with the atom-numbering

Fig. 2 ORTEP diagram showing the molecular structure of 14k with atomic numbering scheme.

scheme. The phenyl rings (A and B) and the triazole ring (D) are planar. The cyclic ketal ring (E) adopts a chair conformation. The phenyl ring (C) is twisted by $54.7(1)^{\circ}$ while the triazole ring (E) is further twisted by $6.7(2)^{\circ}$.

Experimental

Mps were determined on a Büchi-530 instrument in open capillary tubes and are uncorrected. The reagent grade reaction solvents such as DMF were further purified and dried following literature procedures.⁴⁰ Malononitrile and various cyclic ketones were purchased from Aldrich. TLC was performed on precoated silica gel plastic plates and visualized by UV irradiation, exposure to iodine vapors or by spraying with KMnO₄ solution. The IR spectra of concentrated liquid samples were run while the solid samples were analyzed as KBr pellets on a Perkin-Elmer Ac-1. ¹H NMR spectra were recorded at 200 MHz (Bruker WM-200) in CDCl₃ with tetramethylsilane as internal reference. Chemical shifts and coupling constants (J) were reported in δ (ppm) and Hz respectively. Mass spectra were collected at 70 eV using a JEOL JMS-300 spectrometer. Elemental analyses (C, H, and N) were determined on a Carlo Erba EA-1108 at RSIC, Central Drug Research Institute, Lucknow 226001, India.

Synthesis of 4-aryl-1-methoxycarbonyl-2-methylsulfanylbenzocycloalkenes (3a-f, 5a-j)

General procedure. A mixture of 6-aryl-3-methoxycarbonyl-4-methylsulfanyl-2H-pyran-2-one (1, 1 mmol), alicyclic ketone (2 and 4, 1 mmol) and potassium hydroxide (1.5 mmol) was stirred at ambient temperature in dry DMF for 35 hours. After completion the reaction mixture was poured into ice–water and the solution was neutralized with 10% HCl. The precipitate obtained was filtered and purified by column chromatography using $CHCl_3$: hexane (1:2) as eluent.

All the synthesized compounds were characterized spectroscopically and are listed in Table 1.

Synthesis of 4-aryl-2-*sec*-aminobenzocycloalkenecarbonitrile (8a–h)

General Procedure. A solution of 6-aryl-4-*sec*-amino-3cyano-2*H*-pyran-2-one (6) (1 mmol) and cycloalkanone (7) (1 mmol) in dry DMF (12 mL) was stirred in the presence of powdered KOH (1 mmol) at room temperature for 28 h. After this time the reaction mixture was poured into ice-water and neutralized with 10% HCl. The solid obtained was filtered and purified by column chromatography eluting with CHCl₃: hexane (1:3).

The spectroscopic data and physical constants of all the synthesized compounds are listed in Table 2.

Synthesis of methyl 4-aryl-2-methylsulfanyl-6,7-dihydro-5*H*-dibenzo[*a*,*c*]cycloheptene-1-carboxylate (10a–n)

General procedure. An equimolar mixture of pyran-2-one (1), benzosuberones (9) and powdered KOH in dry DMF was stirred at ambient temperature for 38 hours under an inert atmosphere. The reaction mixture was poured into ice-water and the solution was neutralized to pH 7 by 10% HCl. The precipitate obtained (10) was filtered and purified by column chromatography.

All the compounds were characterized by spectroscopic analyses and are listed in Table 3.

Synthesis of 8-aryl-5,6-disubstituted-1,2,3,4-tetrahydronaphthalene-2-one 2,2-dimethyltrimethylene ketal (14a–p)

General procedure. A mixture of 6-aryl-3,4-disubstituted-2*H*-pyran-2-one (13) (1 mmol), cyclohexane-1,4-dione mono-2,2-dimethyltrimethylene ketal (12, 1 mmol) and potassium hydroxide (1.5 mmol) was stirred at room temperature in dry DMF (15 mL) for 25 h. After completion, the reaction mixture was poured into ice–water and the solution was neutralized with 10% HCl. The solid obtained was filtered and purified on a silica gel column by eluting with CHCl₃ : hexane (1 : 1).

All the synthesized compounds are listed in Table 4 with their physical constants and spectroscopic data.

Synthesis of 8-aryl-5,6-disubstituted-3,4-dihydro-2(1*H*)-naphthone (15a–l)

General procedure. A solution of **14** in formic acid (99%) was stirred at room temperature for 28 hours. After completion, excess formic acid was removed under reduced pressure and the product was extracted with $CHCl_3$, washed with water, dried over calcium sulfate and purified by column chromatography using $CHCl_3$: hexane (2 : 1) as eluent.

All the synthesized compounds are listed in Table 4 with their characterization data.

Synthesis of 8-aryl-6-*sec*-amino-1,2,3,4-tetrahydroisoquinoline-5-carbonitrile (18a–h)

General procedure. A mixture of 6-aryl-4-*sec*-amino-3-cyano-2*H*-pyran-2-one (6) (1 mmol), 4-piperidone 17 (1 mmol) and KOH (1 mmol) in dry DMF (12 mL) was stirred at room temperature for 30 h. After completion, the reaction mixture was poured into ice–water and neutralized with 10% HCl. The solid obtained was filtered and purified by column chromatography eluting with CHCl₃: hexane (1 : 2).

All the compounds synthesized are listed in Table 5 with their spectroscopic analyses.

Compd	Ar	Yield (%)	Mp/°C ^a	$v_{\rm max}^{\ b}/{\rm cm}^{-1}$	$\delta_{ m H}$, J/Hz ^c	m/z (%)
3 a	4-ClC ₆ H ₄	59	140	1728	1.25–1.31 (m, 4H, 2CH ₂), 1.45–1.50 (m, 4H, 2CH ₂), 1.67–1.74 (m, 8H, 4CH ₂), 2.41 (s, 3H, SCH ₃), 2.56 (t, <i>J</i> 6.2, 2H, CH ₂), 2.70 (t, <i>J</i> 6.4, 2H, CH ₄), 3.95 (s, 3H, OMe), 6.98 (s, 1H, CH), 7.18 (d, <i>J</i> 8.1, 2H, ArH), 7.38 (d, <i>J</i> 8.1, 2H, ArH).	431 (63.5)
3b	$4-BrC_6H_4$	52	86	1726	1.26–1.32 (m, 4H, 2CH ₂), 1.44–1.50 (m, 4H, 2CH ₂), 1.67–1.75 (m, 8H, 4CH ₂), 2.42 (s, 3H, SCH ₃), 2.58 (t, <i>J</i> 6.0, 2H, CH ₂), 2.70 (t, <i>J</i> 6.2, 2H, CH ₂), 2.40 (t, <i>J</i> 6.2, 2H, CH ₂), 2.70 (t, <i>J</i> 6.2), 2.70 (t, <i>J</i> 6	475 (100)
3c	2-Thienyl	44	98	1726	$1.25-1.31 (m, 4H, 2CH_2), 1.40-1.48 (m, 4H, 2CH_2), 1.52-1.65 (m, 8H, 4CH_2), 2.42 (s, 3H, SCH_3), 2.66 (t, J 6.4, 2H, CH_2), 2.73 (t, J 6.2, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2$	402 (100)
3d	2-Pyridyl	38	160	1722	1.25-1.32 (m, 4H, 2CH ₂), 1.41 (m, 4H, 2CH ₂), $1.58-1.66$ (m, 8H, 4CH ₂), 2.41 (s, 3H, SCH ₃), 2.67 (t, $J6.4$, 2H, CH ₂), 2.75 (t, $J6.3$, $2H$ (m, 4H, 2CH ₂), 1.41 (m, 4H, 2CH ₂), $1.58-1.66$ (m, 8H, 4CH ₂), 2.241 (s, 3H, SCH ₃), 2.67 (t, $J6.4$, 2H, CH ₂), 2.75 (t, $J6.3$, $2H$ (m, $2H$ (m))), 2.67 (t, $2H$ (m)), 2.67 (t, $2H$ (m)), 2.75 (t, $2H$ (m)), 2.67 (t, $2H$ (m)), 2.75 (t, $2H$ (m)), 2.81 (m), 2.81 (m), 2.81 (m), 2.85	397 (68)
3e		42	190	1724	2H, CH ₂ , 3.94 (s, 5H, OMe), 7.14 (s, 1H, CH), 7.9–7.59 (iii, 2H, pyhdy), 7.71 (d, 7 8.0, 1H, pyhdy), 8.00 (d, 7 8.0, 1H, pyhdy). 1.26–1.32 (m, 4H, 2CH ₂), 1.45–1.50 (m, 4H, 2CH ₂), 1.68–1.75 (m, 8H, 4CH ₂), 2.41 (s, 3H, SCH ₃), 2.58 (t, 7 6.3, 2H, CH ₂), 2.70 (t, 7 6.0, 2H, CH ₂), 3.95 (s, 3H, OMe), 6.98 (s, 1H, CH), 7.18 (d, 7 8.1, 2H, ArH), 7.33 (d, 7 7.9, 2H, ArH), 7.53 (d, 7 7.9, 2H, imidazolyl), 8.10 (s, 2H, CH ₂), 3.95 (s, 3H, OMe), 6.98 (s, 1H, CH), 7.18 (d, 7 8.1, 2H, ArH), 7.33 (d, 7 7.9, 2H, ArH), 7.53 (d, 7 7.9, 2H, imidazolyl), 8.10 (s, 2H, CH ₂), 3.95 (s, 2H, CH ₂),	462 (52.3)
3f	N N	41	170	1728	1H, imidazolyi). 1.25–1.30 (m, 4H, 2CH ₂), 1.42–1.48 (m, 4H, 2CH ₂), 1.62–1.70 (m, 8H, 4CH ₂), 2.42 (s, 3H, SCH ₃), 2.60 (t, <i>J</i> 6.2, 2H, CH ₂), 2.76 (t, <i>J</i> 6.0, 2H, CH ₂), 3.96 (s, 3H, OMe), 7.02 (s, 1H, CH), 7.38 (d, <i>J</i> 8.2, 2H, ArH), 7.73 (d, <i>J</i> 8.2, 2H, ArH), 7.92 (s, 1H, triazolyl), 8.51 (s, 1H, triazolyl)	463 (56.3)
5a	$4-FC_6H_4$	48	62	1737	1.29-1.45 (m, 22H, 11CH ₂), 2.40 (s, 3H, SCH ₃), 2.44–2.62 (m, 4H, 2CH ₂), 3.94 (s, 3H, OMe), 7.04 (s, 1H, CH), 7.11 (d, <i>J</i> 8.0, 2H, ArH), 7.33 (d, <i>J</i> 8.0, 2H, ArH)	456 (100)
5b	$4-ClC_6H_4$	52	43	1717	1.24-1.48 (m, 22H, 11CH ₂), 2.41 (s, 3H, SCH ₃), 2.44–2.56 (m, 4H, 2CH ₂), 3.83 (s, 3H, OMe), 7.02 (s, 1H, CH), 7.07 (d, <i>J</i> 8.2, 2H, ArH), 7.25 (d, <i>J</i> 8.2, 1H, ArH)	472 (34.9)
5c	$4-BrC_6H_4$	48	78	1724	1.35-1.47 (m, 22H, 11CH ₂), 2.40 (s, 3H, SCH ₃), 2.46–2.58 (m, 4H, 2CH ₂), 3.94 (s, 3H, OMe), 6.99 (s, 1H, CH), 7.12 (d, <i>J</i> 7.8, 2H, ArH), 7.52 (d, <i>J</i> 7.8, 1H, ArH)	517 (32)
5d		45	Oil	1727	1.9-1.45 (m, 22H, 11CH ₂), 2.37 (s, 3H, SCH ₃), 2.41–2.52 (m, 4H, 2CH ₂), 3.87 (s, 3H, OMe), 5.94 (s, 2H, CH ₂ O ₂), 6.89 (s, 1H, CH), 6.70–7.82 (m, 3H, ArH).	482 (100)
5e	2-Pyridyl	41	58	1728	1.21–1.48 (m, 22H, 11CH ₂), 2.41 (s, 3H, SCH ₃), 2.45–2.59 (m, 4H, 2CH ₂), 3.94 (s, 3H, OMe), 7.16 (s, 1H, CH), 7.30–7.35 (m, 2H, 1H), 7.71 (1, 12, 0, 1H	439 (100)
5f		48	132	1718	pyridyl), 7.71 (d, J 8.0, 1H, pyridyl), 8.06 (d, J 8.0, 1H, pyridyl). 1.26–1.66 (m, 22H, 11CH ₂), 2.52 (s, 3H, SCH ₃), 2.59–274 (m, 4H, 2CH ₂), 3.96 (s, 3H, OMe), 7.04 (s, 1H, CH), 7.35 (d, J 7.8, 2H, ArH), 7.47 (d, J 8.0, 2H, ArH), 7.81 (d, J 8.0, 2H, imidazolyl), 7.99 (s, 1H, imidazolyl).	504 (31.3)
5g		42	153	1718	1.25–1.56 (m, 22H, 11CH ₂), 2.52 (s, 3H, SCH ₃), 2.47–2.60 (m, 4H, 2CH ₂), 3.96 (s, 3H, OMe), 7.04 (s, 1H, CH), 7.39 (d, <i>J</i> 7.9, 2H, ArH), 7.73 (d, <i>J</i> 7.9, 2H, ArH), 8.14 (s, 1H, triazolyl), 8.61 (s, 1H, triazolyl).	505 (48.3)
5h		36	Oil	1728	1.22–1.53 (m, 22H, 11CH ₂), 2.5 (s, 3H, SCH ₃), 2.42–2.62 (m, 4H, 2CH ₂), 3.96 (s, 3H, OMe), 7.06 (s, 1H, CH), 7.30–7.47 (m, 4H, ArH), 7.82–7.88 (m, 3H, ArH).	488 (75)
5i		38	Oil	1718	1.24–1.53 (m, 22H, 11CH ₂), 2.51 (s, 3H, SCH ₃), 2.54–2.78 (m, 4H, 2CH ₂), 3.94 (s, 3H, OMe), 7.08 (s, 1H, CH), 7.58 (d, <i>J</i> 8.0, 2H, ArH), 7.81–7.89 (m, 5H, ArH), 7.99–8.04 (m, 2H, ArH).	562 (58)

 Table 1
 Physical and spectral data for compounds 3a-f and 5a-i

^a Uncorrected. ^b From KBr discs/concentrated liquid. ^c From CHCl₃.

Table 2	Physical	and s	pectral	data	for com	pounds	8a-l	h

8	п		Ar	Yield (%)	Mp/ °C ^a	$\frac{v_{max}}{cm^{-1}}^{b/}$	$\delta_{ m H}$, J/Hz c	m/z (%)
a	1	-N	4-ClC ₆ H ₄	44	144	2214	1.54–1.59 (m, 2H, CH ₂), 1.71–1.74 (m, 2H, CH ₂), 1.86 (t, <i>J</i> 6.0, CH ₂), 1.94 (t, <i>J</i> 5.9, 2H, CH ₂), 2.68 (t, <i>J</i> 6.1, 4H, 2CH ₂), 2.89 (t, <i>J</i> 6.0, 4H, 2CH ₂), 6.28 (s, 1H, CH), 7.14 (d, <i>J</i> 9.0, 2H, ArH), 7.28 (d, <i>J</i> 9.0, 2H, ArH).	336 (100)
b	1		$4-CH_3C_6H_4$	45	110	2215	1.64–1.71 (m, 2H, CH ₂), 1.78–1.84 (m, 2H, CH ₂), 2.30 (s, 3H, CH ₃), 2.47 (t, <i>J</i> 6.0, 2H, CH ₂), 2.83 (t, <i>J</i> 5.9, 2H, CH ₂), 3.18 (t, <i>J</i> 6.0, 4H, 2CH ₂), 6.28 (s, 1H, CH), 7.11–7.26 (m, 4H, ArH), 8.30–8.38 (m, 3H, pyridyl).	409 (100)
c	1		2-Benzofuryl	42	105	2215	1.67–1.84 (m, 4H, 2CH ₂), 2.63 (s, 3H, CH ₃), 2.91 (t, <i>J</i> 6.0, 2H, CH ₂), 3.27 (t, <i>J</i> 5.8, 4H, 2CH ₂), 4.07 (t, <i>J</i> 5.9, 4H, 2CH ₂), 6.98 (s, 1H, CH), 7.31–7.40 (m, 4H, ArH), 8.32–8.41 (m, 3H, pyridyl).	435 (40)
d	2	-N	$4-CH_3C_6H_4$	44	Oil	2216	1.48–1.66 (m, 6H, 3CH ₂), 2.33 (s, 3H, CH ₃), 2.58 (t, <i>J</i> 6.0, 2H, CH ₂), 2.64 (t, <i>J</i> 5.8, 2H, CH ₂), 2.80 (t, <i>J</i> 6.0, 4H, 2CH ₂), 3.18 (t, <i>J</i> 6.0, 4H, 2CH ₂), 3.18 (t, <i>J</i> 6.0, 4H, 2CH ₂), 6.63 (s, 1H, CH), 7.07 (d, <i>J</i> 9.0, 2H, ArH), 7.14 (d, <i>J</i> 9.0, 2H, ArH).	330 (100)
e	3	-N	C_6H_5	48	Oil	2216	1.44–1.73 (m, 4H, 2CH ₂), 1.78–1.86 (m, 4H, CH ₂), 2.30 (t, <i>J</i> 6.0, 2H, CH ₂), 2.38 (t, <i>J</i> 6.0, 2H, CH ₂), 2.94 (t, <i>J</i> 5.8, 4H, 2 CH ₂), 3.45 (t, <i>J</i> 6.0, 4H, CH ₂), 6.30 (s, 1H, CH), 7.18–7.36 (m, 5H, ArH).	330 (100)
f	7	-N	C_6H_5	40	145	2212	1.26–1.50 (m, 16H, 8CH ₂), 1.89–1.97 (m, 4H, 2CH ₂), 2.81 (t, <i>J</i> 6.0, 4H, 2CH ₂), 3.44 (t, 4H, 2CH ₂), 6.29 (s, 1H, CH), 7.16–7.29 (m, 5H, ArH).	386 (100)
g	10		$4-FC_6H_4$	38	Oil	2218	1.25–1.35 (m, 4H, 2CH ₂), 2.17–2.46 (m, 22H, 11CH ₂), 3.23 (t, <i>J</i> 6.0, 4H, 2CH ₂), 3.74 (t, <i>J</i> 6.0, 4H, 2CH ₂), 6.64 (s, 1H, CH), 7.14–7.21 (m, 4H, ArH), 7.26–7.50 (m, 3H, pyridyl).	538 (50)
h	10		2-Benzofuryl	39	164	2217	1.25–1.47 (m, 4H, 2CH ₂), 2.17–2.50 (m, 22H, 11CH ₂), 3.23 (t, <i>J</i> 5.8, 4H, 2CH ₂), 4.06 (t, <i>J</i> 5.8, 4H, 2CH ₂), 6.32 (s, 1H, furyl), 6.49 (s, 1H, CH), 7.23–7.37 (m, 4H, ArH), 8.32–8.39 (m, 3H, pyridyl).	561 (60)
a	Uncorr	ected. ^b From KBr di	scs/concentrated	l liquid. ^c	From C	CHCl ₃ .		

Table 3 Physical and spectral data for compounds 10a	-n
--	----

10	R	Ar	Yield (%)	Mp/°C ^a	$v_{\rm max}{}^b/{\rm cm}^{-1}$	$\delta_{ m H}, J/ m Hz^c$	m/z (%)
a	Н	$4\text{-FC}_6\text{H}_4$	38	Oil	1723	1.18–1.56 (m, 2H, CH ₂), 1.98 (t, <i>J</i> 6.2, 2H, CH ₂), 2.51 (s, 3H, SCH ₃), 2.62 (t, <i>J</i> 6.2, 2H, CH ₂), 3.97 (s, 3H, OCH ₃), 6.88 (s, 1H, CH), 7.11–7.24 (m, 4H, ArH), 7.29–7.41 (m, 4H, ArH)	392 (60)
b	Η	$4-ClC_6H_4$	35	173	1723	1.25–1.58 (m, 2H, CH ₂), 2.05 (t, <i>J</i> 6.2, 2H, CH ₂), 2.53 (s, 3H, SCH ₃), 2.60 (t, <i>J</i> 6.2, 2H, CH ₂), 3.96 (s, 3H, OCH ₃), 6.91 (s, 1H, CH), 7.21 (d, <i>J</i> 8.0, 2H, ArH), 7.27–7.39 (m, 4H, ArH).	408 (100)
c	Η	$4-BrC_6H_4$	33	189	1706	1.18–1.50 (m, 2H, CH ₂), 2.03 (t, <i>J</i> 6.2, 2H, CH ₂), 2.53 (s, 3H, SCH ₃), 2.65 (t, <i>J</i> 6.2. 2H, CH ₂), 3.94 (s, 3H, OCH ₃), 6.92 (s, 1H, CH), 7.01–7.18 (m, 4H, ArH), 7.21–7.39 (m, 4H, ArH).	453 (100)
d	Н	$4-CH_3C_6H_4$	37	Oil	1722	1.15–1.46 (m, 2H, CH ₂), 2.03 (t, <i>J</i> 6.2, 2H, CH ₂), 2.39 (s, 3H, CH ₃), 2.51 (s, 3H, SCH ₃), 2.55 (t, <i>J</i> 6.2, 2H, CH ₂), 3.93 (s, 3H, OCH ₃), 6.92 (s, 1H, CH), 7.01–7.18 (m, 4H, ArH), 7.21–7.34 (m, 4H, ArH).	392 (80)
e	Η	$3-ClC_6H_4$	31	130	1718	1.18–1.49 (m, 2H, CH ₂), 1.97 (t, <i>J</i> 6.2, 2H, CH ₂), 2.50 (s, 3H, SCH ₃), 2.58 (t, <i>J</i> 6.2, 2H, CH ₂), 3.96 (s, 3H, OCH ₃), 6.98 (s, 1H, CH), 7.02–7.20 (m, 4H, ArH), 7.29–7.38 (m, 4H, ArH).	408 (100)
f	Н	2-Pyridyl	33	Oil	1724	1.28–1.60 (m, 2H, CH ₂), 2.09 (t, <i>J</i> 6.0, 2H, CH ₂), 2.51 (s, 3H, SCH ₃), 2.59 (t, <i>J</i> 6.0, 2H, CH ₂), 3.93 (s, 3H, OCH ₃), 6.90 (s, 1H, CH), 7.01–7.15 (m, 4H, ArH), 7.20–7.31 (m, 4H, pyridyl).	375 (100)
g	Н	2-Thienyl	32	163	1710	1.25–1.56 (m, 2H, CH ₂), 2.06 (t, <i>J</i> 6.4, 2H, CH ₂), 2.50 (s, 3H, SCH ₃), 2.62 (t, <i>J</i> 6.4, 2H, CH ₂), 3.96 (s, 3H, OCH ₃), 7.01 (s, 1H, CH), 7.08–7.13 (m, 3H, thienyl), 7.20–7.31 (m, 4H, ArH)	380 (50)
h	F	$4-FC_6H_4$	35	Oil	1723	1.25–1.52 (m, 2H, CH ₂), 1.97 (t, <i>J</i> 6.2, 2H, CH ₂), 2.50 (s, 3H, SCH ₃), 2.58 (t, <i>J</i> 6.2, 2H, CH ₂), 3.92 (s, 3H, OCH ₃), 6.96 (s, 1H, CH), 7.05–7.16 (m, 4H, ArH), 7.22–7.36 (m, 3H, ArH).	410 (100)
i	F	$4-ClC_6H_4$	39	170	1728	1.26–1.58 (m, 2H, CH ₂), 2.17 (t, <i>J</i> 6.2, 2H, CH ₂), 2.56 (s, 3H, SCH ₃), 2.68 (t, <i>J</i> 6.2, 2H, CH ₂), 3.77 (s, 3H, OCH ₃), 6.96 (s, 1H, CH), 7.16 (d, <i>J</i> 8.0, 2H, ArH), 7.28 (d, <i>J</i> 8.0, 2H, ArH), 7.35–7.54 (m, 3H, ArH).	426 (100)
j	F	$4-BrC_6H_4$	41	185	1718	1.25–1.48 (m, 2H, CH ₂), 2.06 (t, <i>J</i> 6.0, 2H, CH ₂), 2.50 (s, 3H, SCH ₃), 2.59 (t, <i>J</i> 6.1, 2H, CH ₂), 3.92 (s, 3H, OCH ₃), 6.85 (s, 1H, CH), 7.13–7.22 (m, 4H, ArH), 7.26–7.39 (m, 3H, ArH).	471 (100)
k	F	$3-\mathrm{ClC}_6\mathrm{H}_4$	33	Oil	1728	1.23–1.49 (m, 2H, CH ₂), 2.10 (t, <i>J</i> 6.2, 2H, CH ₂), 2.51 (s, 3H, SCH ₃), 2.59 (t, <i>J</i> 6.2, 2H, CH ₂), 3.91 (s, 3H, OCH ₃), 6.98 (s, 1H, CH), 7.09–7.27 (m, 4H, ArH), 7.32–7.44 (m, 3H, ArH).	426 (100)
I	F	2-Thienyl	33	Oil	1724	1.18–1.39 (m, 2H, CH ₂), 2.01 (t, <i>J</i> 6.2, 2H, CH ₂), 2.51 (s, 3H, SCH ₃), 2.57 (t, <i>J</i> 6.2, 2H, CH ₂), 3.90 (s, 3H, OCH ₃), 6.95 (s, 1H, CH), 7.04–7.11 (m, 3H, thienyl), 7.19–7.47 (m, 3H, ArH).	398 (100)
m	F		31	Oil	1710	1.15–1.36 (m, 2H, CH ₂), 2.08 (t, J 6.2, 2H, CH ₂), 2.48 (s, 3H, SCH ₃), 2.55 (t, J 6.2, 2H, CH ₂), 3.68 (s, 3H, OCH ₃), 6.96 (s, 1H, CH), 7.14–7.25 (m, 4H, ArH), 7.35–7.49 (m, 3H, ArH), 7.53–7.63 (m, 2H, imidazolyl), 7.91 (s, 1H, imidazolyl).	458 (100)
n	F		30	Oil	1724	1.25–1.49 (m, 2H, CH ₂), 2.07 (t, <i>J</i> 6.2, 2H, CH ₂), 2.45 (s, 3H, SCH ₃), 2.53 (t, <i>J</i> 6.2, 2H, CH ₂), 3.92 (s, 3H, OCH ₃), 6.95 (s, 1H, CH), 7.16–7.28 (m, 3H, ArH), 7.42–7.56 (m, 3H, ArH), 7.99 (s, 1H, triazolyl).	459 (100)
^a U	ncor	rected. ^b From KBr	discs/co	oncentrated	l liquid. ^c Fro	om CHCl ₃ .	

 Table 4
 Physical and spectral data for compounds 14a-p and 15a-l

Compd	Ar	Х	Y	Yield (%)	Mp/ °C ^a	$\frac{v_{\max}}{cm^{-1}}^{b/l}$	$\delta_{ m H}, J/ m Hz^c$	m/z (%)
14a	$4-FC_6H_4$	SMe	COOMe	42	125	1724	0.86 (s, 3H, CH ₃), 0.98 (s, 3H, CH ₃), 2.13 (s, 2H, CH ₂), 2.51 (s, 3H, SCH ₃), 2.80 (s, 4H, 2CH ₂), 3.31 (t, <i>J</i> 6.2, 2H, CH ₂), 3.49 (t, <i>J</i> 6.2, 2H, CH ₃), 3.86 (s, 3H, OMe), 6.93 (s, 1H, CH), 7.15–7.28 (m, 4H, ArH)	430 (63.5)
14b	$4-ClC_6H_4$	SMe	COOMe	49	145	1730	(1, <i>J</i> 6.0, 2H, CH ₂), 0.98 (s, 3H, CH ₃), 2.12 (s, 2H, CH ₂), 2.53 (s, 3H, SCH ₃), 2.81 (s, 4H, 2CH ₂), 3.31 (t, <i>J</i> 6.0, 2H, CH ₂), 3.48 (t, <i>J</i> 6.0, 2H, CH ₂), 3.94 (s, 3H, OM ₂), 7.06 (s, 1H, CH), 7.22 (d, <i>J</i> 8.0, 2H, ArH), 7.37 (d, <i>J</i> 8.0, 2H, ArH).	446 (100)
14c	$4-CH_3C_6H_4$	SMe	COOMe	52	140	1724	0.86 (s, 3H, CH ₃), 0.96 (s, 3H, CH ₃), 2.12 (s, 2H, CH ₂), 2.41 (s, 3H, CH ₃), 2.52 (s, 3H, SCH ₃), 2.85 (s, 4H, 2CH ₂), 3.32 (t, <i>J</i> 6.4, 2H, CH ₂), 3.53 (t, <i>J</i> 6.3, 2H, CH ₂), 3.94 (s, 3H, OMe), 6.91 (s, 1H, CH), 7.17 (d, <i>J</i> 8.0, 2H, ArH), 7.26 (d, <i>J</i> 8.0, 2H, ArH).	426 (100)
14d	$4-CH_3OC_6H_4$	SMe	COOMe	54	121	1724	0.86 (s, 3H, CH ₃), 0.97 (s, 3H, CH ₃), 2.12 (s, 2H, CH ₂), 2.49 (s, 3H, CH ₃), 2.85 (s, 4H, 2CH ₂), 3.32 (t, <i>J</i> 6.2, 2H, CH ₂), 3.52 (t, <i>J</i> 6.2, 2H, CH ₂), 3.85 (s, 3H, OMe), 3.95 (s, 3H, OMe), 6.92 (s, 1H, CH), 7.17 (d, <i>J</i> 8.0, 2H, ArH), 7.26 (d, <i>J</i> 8.0, 2H, ArH).	442 (68)
14e	3-Cl, 4-FC ₆ H ₃	SMe	COOMe	48	Oil	1726	0.85 (s, 3H, CH ₃), 0.96 (s, 3H, CH ₃), 2.13 (s, 2H, CH ₂), 2.52 (s, 3H, CH ₃), 2.85 (s, 4H, 2CH ₂), 3.33 (t, <i>J</i> 6.1, 2H, CH ₂), 3.55 (t, <i>J</i> 6.2, 2H, CH ₂), 3.94 (s, 3H, OMe), 6.69 (s, 1H, CH), 7.13–7.26 (m, 3H, ArH).	464 (52.3)
14f	$3,4-Cl_2C_6H_3$	SMe	COOMe	44	Oil	1726	0.84 (s, 3H, CH ₃), 0.96 (s, 3H, CH ₃), 2.17 (s, 2H, CH ₂), 2.51 (s, 3H, SCH ₃), 2.89 (s, 4H, 2CH ₂), 3.32 (t, 2H, <i>J</i> 6.0, CH ₂), 3.49 (t, 2H, <i>J</i> 6.0, CH ₂), 3.49 (t, <i>J</i> 6.0, 2H, CH ₂), 3.94 (s, 3H, OMe), 7.04 (s, 1H, CH), 7.18–7.30 (m, 3H, ArH).	480 (56.3)
14g	2-Furyl	SMe	COOMe	48	Oil	1728	0.87 (s, 3H, CH ₃), 1.07 (s, 3H, CH ₃), 2.16 (s, 2H, CH ₂), 2.52 (s, 3H, SCH ₃), 2.88 (s, 4H, 2CH ₂), 3.13 (t, 2H, <i>J</i> 6.0, CH ₂), 3.47 (t, 2H, <i>J</i> 6.0, CH ₂), 3.94 (s, 3H, OMe), 7.04 (s, 1H, CH), 6.53–6.57 (m, 2H, furyl), 7.15 (s, 1H, furyl), 7.27 (s, 1H, furyl).	401 (100)
14h	4-Pyridyl	SMe	COOMe	51	133	1718	0.85 (s, 3H, CH ₃), 0.96 (s, 3H, CH ₃), 2.14 (s, 2H, CH ₂), 2.52 (s, 3H, SCH ₃), 2.88 (s, 4H, 2CH ₂), 3.31 (t, <i>J</i> 6.2, 2H, CH ₂), 3.49 (t, <i>J</i> 6.2, 2H, CH ₂), 3.98 (s, 3H, OMe), 7.06 (s, 1H, CH), 7.23 (d, <i>J</i> 7.9, 2H, pyridyl), 8.62 (d, 2H, <i>J</i> 7.9, pyridyl)	413 (34.9)
14i	2-Thienyl	SMe	COOMe	54	99	1724	0.88 (s, 3H, CH ₃), 2.13 (s, 2H, CH ₂), 2.51 (s, 3H, SCH ₃), 2.89 (s, 4H, 2CH ₂), 3.37 (t, <i>J</i> 6.2, 2H, CH ₂), 3.54 (t, <i>J</i> 6.2, 2H, CH ₂), 3.93 (s, 3H, OMe), 7.02 (s, 1H, CH), 7.07–7.15 (m, 2H, thienyl), 7.36 (s, 1H, thienyl).	417 (32)
14j	Z → Z →	SMe	СООМе	58	206	1724	0.84 (s, 3H, CH ₃), 0.96 (s, 3H, CH ₃), 2.19 (s, 2H, CH ₂), 2.43 (s, 3H, SCH ₃), 2.89 (s, 4H, 2CH ₂), 3.32 (t, <i>J</i> 6.2, 2H, CH ₂), 3.48 (t, <i>J</i> 6.2, 2H, CH ₂), 3.96 (s, 3H, OMe), 6.82 (s, 1H, CH), 7.28 (d, <i>J</i> 8.2, 2H, ArH), 7.44 (d, <i>J</i> 8.2, 2H, ArH), 7.76–8.11 (m, 2H, imidazolyl), 8.54 (s, 1H, imidazolyl).	478 (100)
14k		SMe	СООМе	56	222	1720	0.85 (s, 3H, CH ₃), 0.99 (s, 3H, CH ₃), 2.12 (s, 2H, CH ₂), 2.52 (s, 3H, SCH ₃), 2.90 (s, 4H, 2CH ₂), 3.31 (t, <i>J</i> 6.2, 2H, CH ₂), 3.50 (t, <i>J</i> 6.2, 2H, CH ₂), 3.96 (s, 3H, OMe), 7.11 (s, 1H, CH), 7.26 (d, <i>J</i> 8.2, 2H, ArH), 7.40 (d, <i>J</i> 8.2, 2H, ArH), 8.14 (s, 1H, triazolyl), 8.61 (s, 1H, triazolyl).	479 (100)
141	1-Naphthyl	$N(CH_3)_2$	CN	52	162	2212	0.83 (d, J 2.56, 6H, 2CH ₃), 2.01–2.41 (m, 2H, CH ₂), 2.50 (s, 2H, CH ₂), 2.97 (s, 6H, 2NCH ₃), $3.11-3.27$ (m, 2H, CH ₂), 3.76 (d, J 2.38, 2H, OCH), 3.53 (d, J 2.34, 2H, OCH), 6.73 (s, 1H, ArH), $7.25-7.52$ (m, 5H, ArH), $7.86-7.92$ (m, 2H, ArH)	426 (100)
14m	l-Naphthyl	$\langle N \rangle$	CN	47	166	2204	(d, <i>J</i> 4.0, 6H, 2CH ₃), 1.92–2.06 (m, 4H, 2CH ₂ , pyrrolidinyl), 2.06–2.24 (m, 2H, CH ₂), 2.45 (s, 2H, CH ₂), 3.08–3.14 (m, 2H, CH ₂), 3.46–3.48 (m, 4H, 2OCH ₂), 3.53–3.57 (m, 4H, 2NCH ₂ , pyrrolidinyl), 6.49 (s, 2H, ArH), 7.36–7.55 (m, 5H, ArH), 7.85–7.91 (m, 2H, ArH).	452 (100)
14n	l-Naphthyl		CN	52	182	2215	0.83 (d, J 3.5 6H, 2CH ₃), 1.65–1.67 (m, 6H, 3CH ₂ , piperidinyl), 2.05–2.26 (m, 2H, CH ₂), 2.52 (s, 2H, CH ₂), 3.03–3.11 (m, 4H, 2NCH ₂ , piperidinyl), 3.19–3.27 (m, 2H, CH ₂), 3.47 (s, 2H, OCH ₂), 3.53 (s, 2H, OCH ₂), 6.78 (s, 1H, ArH), 7.30–7.56 (m, 5H, ArH), 7.86–7.92 (m, 2H, ArH).	466 (100)
140	l-Naphthyl	CH ₃	CN	46	156	2216	0.83 (d, <i>J</i> 2.9, 6H, 2CH ₂), 0.95 (d, <i>J</i> 4.8, 3H, CH ₃), 1.45–1.47 (m, 1H, piperidinyl), 2.08–2.24 (m, 2H, CH ₂), 2.52 (s, 2H, CH ₂), 2.70–2.90 (m, 4H, 2NCH ₂ , piperidinyl), 3.11–3.27 (m, 2H, CH ₂), 3.47 (s, 2H, OCH ₂), 3.55 (s, 2H, OCH ₂), 6.78 (s, 1H, ArH), 7.30–7.56 (m, 5H, ArH), 7.86–7.92 (m, 2H, ArH).	478 (100)

J. Chem. Soc., Perkin Trans. 1, 2002, 1426–1437 1433

Contd.)

14	ible 4	(Conta.)							
J. Chem	ompd	Ar	Х	Y	Yield (%)	$^{Mp/}_{^{\circ}C^a}$	$\frac{v_{\max}}{cm^{-1}}^{b/l}$	$\delta_{\mathbf{H}}, J\!/\mathbf{Hz}^c$	m/z (%)
. 14	р	2-Naphthyl	∧ N	CN	50	194	2195	0.85 (s, 3H, CH ₃), 0.93 (s, 3H, CH ₃), 1.94–2.0 (m, 4H, 2CH ₂ , pyrrolidinyl), 2.20 (t, <i>J</i> 6.8, 2H, CH ₂), 2.72 (s, 2H, CH ₂), 3.07 (t, <i>J</i> 6.8, 2H, CH ₂), 3.33 (d, <i>J</i> 11.4, 2H, CH ₂), 3.30–3.60 (m, 6H, 3CH ₂), 6.51 (s, 1H, ArH), 7.37–7.56 (m, 3H, ArH), 7.73 (s, 1H, ArH), 7.82–7.89 (m, 3H, ArH).	452 (100)
erkii	a	$4\text{-}\mathrm{ClC}_6\mathrm{H}_4$	SMe	COOMe	80	Oil	1726	2.56 (s, 3H, SCH ₃), 2.62–2.73 (m, 2H, CH ₂), 3.19 (s, 2H, CH ₂), 3.92 (s, 3H, OCH ₃), 3.95–4.01 (m, 2H, CH ₂), 7.19 (s, 1H, CH), 7.34 (d, 18.2, 2H, ArH), 7.94 (d, 18.0, 2H, ArH)	340 (100)
1 15	b	$4-CH_3C_6H_4$	SMe	COOMe	82	Oil	1722	2.43 (s, 3H, CH ₃), 2.51 (s, 3H, SCH ₃), 2.63–2.86 (m, 2H, CH ₂), 3.63 (s, 2H, CH ₂), 3.96 (s, 3H, OCH ₃), 3.99–4.06 (m, 2H, CH ₂), 7.14 (s, 1H, CH ₂), 7.26 (d, 18.2, 2H, ArH)	340 (48.3)
ns. 15	c	$4-CH_3OC_6H_4$	SMe	COOMe	75	Oil	1726	2.51 (s, 3H, SCH ₃), 2.62–2.78 (m, 2H, CH ₂), 3.49 (s, 2H, CH ₂), 3.85 (s, 3H, OCH ₃), 3.98 (s, 3H, OCH ₃), 4.01–4.11 (m, 2H, CH ₂), 2.04 (s, 2H, CH	356 (75)
, 200 15	d	3-Cl-, 4-FC ₆ H ₃	SMe	COOMe	70	Oil	1724	CH_{22} , 7.02 (s, 1H, CH), 7.28 (d, J 8.2, 2H, AFH), 7.42 (d, J 8.2, 2H, AFH). 2.53 (s, 3H, SCH ₃), 2.63–2.79 (m, 2H, CH ₂), 3.24 (s, 2H, CH ₂), 3.96 (s, 3H, OCH ₃), 3.98–4.04 (m, 2H, CH ₂), 7.08 (s, 1H, CH), 7.21 , 7.24 (m, $2H$, $A_{2}H$)	378 (58)
2, 15	e	$3,4-Cl_2C_6H_3$	SMe	COOMe	68	Oil	1722	7.21–7.30 (m, 5H, ATH). 2.54 (s, 3H, SCH ₃), 2.61–2.75 (m, 2H, CH ₂), 3.21 (s, 2H, CH ₂), 3.96 (s, 3H, OCH ₃), 3.99–4.07 (m, 2H, CH ₂), 6.99 (s, 1H, CH), 7.20, 7.20 (m, 2H, ArH).	394 (75)
26-15	f	2-Thienyl	SMe	COOMe	85	Oil	1724	7.20–7.39 (iii, 5H, ATH). 2.50 (s, 3H, SCH ₃), 2.60–2.73 (iii, 2H, CH ₂), 3.49 (s, 2H, CH ₂), 3.94 (s, 3H, OCH ₃), 3.99–4.08 (iii, 2H, CH ₂), 7.05 (s, 1H, CH), 7.18, 7.28 (iii), 2H, thiomyl), 7.44 (s, 1H, thiomyl)	332 (60)
437 15	g	N N N	SMe	COOMe	68	Oil	1724	7.18-7.28 (m, 2H, thienyl), 7.44 (s, 1H, thienyl). 2.52 (s, 3H, SCH ₃), 2.60–2.73 (m, 2H, CH ₂), 3.48 (s, 2H, CH ₂), 3.96 (s, 3H, COOCH ₃), 3.99–4.08 (m, 2H, CH ₂), 7.13 (s, 1H, CH), 7.28 (d, J 8.0, 2H, ArH), 7.59 (d, J 8.0, 2H, ArH), 8.31 (s, 1H, triazolyl), 8.56 (s, 1H, triazolyl).	393 (100)
15	h	1-Naphthyl	$N(CH_2)_2$	CN	82	193	2213	258–2.60 (m, 2H, CH ₂), 3.04 (s, 6H, 2NCH ₃), 3.39 (t, <i>J</i> 6.68, 2H, CH ₂), 3.80 (s, 2H, CH ₂), 6.82 (s, 1H, ArH), 7.28–7.56 (m, 5H, ArH), 7.88, 8.0 (m, 2H, ArH)	340 (100)
15	i	1-Naphthyl	$\langle \mathbf{N} \rangle$	CN	84	210	2215 1716	1.89–1.96 (m, 4H, 2CH ₂ , pyrrolidinyl), 2.46–2.53 (m, 2H, CH ₂), 2.95 (s, 2H, CH ₂), 3.33 (t, <i>J</i> 6.4, 2H, CH ₂), 3.54–3.63 (m, 4H, 2NCH ₂ , pyrrolidinyl), 6.50 (s, 1H, ArH), 7.31–7.48 (m, 5H, ArH), 7.79–7.85 (m, 2H, ArH).	366 (100)
15	j	1-Naphthyl		CN	84	188	2216 1721	1.76–1.78 (m, 6H, 3CH ₂ , piperidinyl), 2.42–2.52 (m, 2H, CH ₂), 3.10 (s, 2H, CH ₂), 3.16–3.17 (m, 4H, 2NCH ₂ , piperidinyl), 6.89 (s, 1H, ArH), 7.30–7.48 (m, 5H, ArH), 7.79–7.85 (m, 2H, ArH).	380 (63)
15	k	l-Naphthyl		CN	85	170	2214 1709	0.99 (d, <i>J</i> 5.4, 3H, CH ₃), 1.55–1.70 (m, 1H, piperidinyl), 1.78–1.80 (m, 4H, 2CH ₂ , piperidinyl), 2.54–2.63 (m, 2H, CH ₂), 2.77–2.90 (m, 4H, 2NCH ₂ , piperidinyl), 3.10 (s, 2H, CH ₂), 3.39 (t, <i>J</i> 6.7, 2H, CH ₂), 6.89 (s, 1H, ArH), 7.34–7.55 (m, 5H, ArH), 7.88–7.93 (m, 2H, ArH).	394 (100)
15	1	2-Naphthyl	∠_N ∣	CN	86	206	2202 1715	1.98–205 (m, 4H, 2CH ₂ , pyrrolidinyl), 2.54–2.60 (m, 2H, CH ₂), 3.29–3.49 (m, 4H, 2CH ₂), 3.60–3.67 (m, 2H, 2CH ₂), 6.59 (s, 1H, ArH), 7.30–7.35 (m, 2H, ArH), 7.50–7.56 (m, 2H, ArH), 7.69 (s, 1H, ArH), 7.82–7.96 (m, 2H, ArH).	366 (100)
^a L	Jncorre	ected. ^b From KB	r discs/conce	entrated liqu	iid. ^c Fro	m CHCl ₃	g•		

18	R'	-N(R)	Ar	Yield (%)	Mp/ °C ^a	$v_{\max}^{b/l}$ cm ⁻¹	$\delta_{ m H}$, J/Hz c	m/z (%)
a	Н	N N-	4-FC ₆ H ₄	38	Oil	22173443	2.17 (t, <i>J</i> 6.0, 2H, CH ₂), 2.53 (t, <i>J</i> 6.0, 2H, CH ₂), 2.99 (t, <i>J</i> 6.1 4H, 2CH ₂), 3.45 (s, 2H, CH ₂), 3.56 (t, 4H, 2CH ₂), 6.64 (s, 1H, CH), 7.09–7.20 (m, 4H, ArH), 7.26–7.50 (m, 3H, pyridyl), 8.02 (s, 1H, pyridyl), 8.22 (s, 1H, NH)	413 (100)
b	Н	∭N−	4-CH ₃ C ₆ H ₄	35	152	22153437	2.09 (t, J 6.0, 2H, CH ₂), 2.31 (s, 3H, CH ₃), 2.74 (t, J 6.0, 2H, CH ₂), 2.90 (t, J 6.0, 4H, 2CH ₂), 3.50 (s, 2H, CH ₂), 3.62 (t, J 6.0 4H, 2CH ₂), 3.50 (s, 2H, CH ₂), 3.62 (t, J 6.0 4H, 2CH ₂), 6.31 (s, 1H, CH), 7.04–7.18 (m, 4H, ArH), 8.24 (s, 1H, NH)	317 (100)
c	Η	N N-	4-CH ₃ C ₆ H ₄	38	168	22173347	2.17 (t, J 6.1, 2H, CH ₂), 2.32 (s, 3H, CH ₃), 2.78 (t, J 6.1, 2H, CH ₂), 3.16 (t, J 6.1, 4H, 2CH ₂), 3.78 (s, 2H, CH ₂), 4.03 (t, J 6.1, 4H, 2CH ₂), 6.48 (s, 1H, CH), 7.10–7.25 (m, 4H, ArH), 7.66–8.01 (m, 3H, pyridyl), 8.33 (s, 1H, NH).	410 (100)
d	Η	N N-	3-Pyridyl	35	145	22193376	2.09 (t, <i>J</i> 6.1, 2H, CH ₂), 2.95 (t, <i>J</i> 6.2, 2H, CH ₂), 3.08 (t, <i>J</i> 6.2, 4H, 2CH ₂), 3.67 (s, 2H, CH ₂), 3.97 (t, <i>J</i> 6.2, 4H, 2CH ₂), 6.64 (s, 1H, CH), 7.49–7.54 (m, 4H, pyridyl), 7.98–8.26 (m, 3H, pyridyl), 8.45 (s, 1H, NH).	397 (100)
e	n-C ₃ H ₇	N-N-N-N-	C ₆ H ₅	34	148	2217	0.78 (t, J 6.0, 2H, CH ₂), 2.09 (t, J 6.2, 2H, CH ₂), 2.31–2.40 (m, 3H, CH ₃), 2.47 (s, 2H, CH ₂), 2.68 (t, J 6.0, 2H, CH ₂), 3.08 (t, J 6.1, 4H, 2CH ₂), 3.48 (s, 2H, CH ₂), 4.04 (t, J 6.1, 4H, 2CH ₂), 6.45 (s, 1H, CH), 7.05–7.27 (m, 5H, ArH), 7.89–8.25 (m 3H pyridyl)	438 (100)
f	n-C ₃ H ₇	N-N-N-N-	2-Benzofuryl	31	172	2219	(ii), 6.4 , 9.4 , $2H$, CH_2), 2.17 (t, J 6.1, $2H$, CH_2), 2.47 (s, $2H$, CH_2), $2.51-2.59$ (m, $3H$, CH_3), 2.85 (t, J 6.2, $2H$, CH_2), 3.28 (t, J 6.2, $4H$, $2CH_2$), 3.78 (s, $2H$, CH_2), 3.28 (t, J 6.2, $4H$, $2CH_2$), 3.78 (s, $2H$, CH_2), 4.07 (t, J 6.2, $4H$, $2CH_2$), 6.49 (s, $1H$, furyl), 6.54 (s, $1H$, CH), $7.27-7.39$ (m, $4H$, AFH), $7.82-8.20$ (m, $3H$ partially)	478 (100)
g	(CH ₂) ₂ C ₆ H ₅	N–	4-CH ₃ C ₆ H ₄	30	184	2205	2.10 (t, <i>J</i> 6.1, 2H, CH ₂), 2.32 (s, 3H, CH ₃), 2.59–2.74 (m, 6H, 3CH ₂), 2.99 (t, <i>J</i> 6.1, 4H, 2CH ₂), 3.47 (s, 2H, CH ₂), 3.54 (t, <i>J</i> 6.1, 4H, 2CH ₂), 6.30 (s, 1H, CH), 7.15–7.48 (m, 9H, ArH).	331 (100)
h	(CH ₂) ₂ C ₆ H ₅	∑N−	C ₆ H ₅	32	134	2208	2.17 (t, J 6.1, 2H, CH ₂), 2.80–2.95 (m, 2H, CH ₂), 3.10–3.22 (m, 6H, 3CH ₂), 3.29 (t, J 6.1, 4H, 2CH ₂), 4.86 (s, 2H, CH ₂), 6.45 (s, 1H, CH), 7.17–7.46 (m, 10H, ArH).	422 (100)
^a Ur	ncorrected. ^b Fr	om KBr discs/concer	ntrated liquid. ^c l	From CHCl ₃	;-			

Synthesis of 8-aryl-5,6-disubstituted-3,4-dihydro-1*H*-isothiochromene (20a-e)

General procedure. A solution of 6-aryl-3,4-disubstituted-2*H*-pyran-2-one (13) (1 mmol), and tetrahydrothiopyran-4-one (19) (1 mmol) in dry DMF (12 mL) was stirred in the presence of powdered KOH (1 mmol) at room temperature for 25 h. After completion of the reaction, the mixture was poured into ice-water and neutralized with 10% HCl. The solid obtained was filtered and purified by column chromatography eluting with CHCl₃: hexane (1 : 1).

All the synthesized compounds are listed in Table 6 with their relevant data.

Synthesis of 7-aryl-9,10-disubstituted-6*H*-benzo[*c*]thiochromene (22a–c)

General procedure. The reaction mixture of 6-aryl-3,4disubstituted-2*H*-pyran-2-one (13) (1 mmol), thiochroman-4one (21) (1 mmol) and powdered KOH (1 mmol) in dry DMF (15 mL) was stirred at room temperature for 30 h. After completion of the reaction, the mixture was poured into ice-water and neutralized with 10% HCl. The solid obtained was filtered and purified by column chromatography eluting with $CHCl_3$: hexane (1:1).

All the synthesized compounds are listed in Table 6 with their spectroscopic data.

Synthesis of 7-aryl-4,5-disubstituted-2,3-dihydro-1-benzothiophene (24a–d)

General procedure. A solution of 6-aryl-3,4-disubstituted-2*H*-pyran-2-one (13) (1 mmol), tetrahydrothiophen-3-one (23) (1 mmol) in dry DMF (12 mL) was stirred at room temperature in the presence of powdered KOH (1 mmol) for 25 h. After this time the reaction mixture was poured into ice–water and neutralized with 10% HCl. The solid was filtered and purified on a silica gel column eluting with CHCl₃: hexane (1 : 2).

The compounds synthesized are listed in Table 6 with their physical constants and spectroscopic data.

Table 6	Physical and	spectral data	for compound	ls 20a–e	e, 22a-c and 24	a—e
---------	--------------	---------------	--------------	-----------------	-----------------	-----

Compd	х	Y	Ar	Yield (%)	Mp/ °C ^a	$v_{\max}^{b/l}$ cm ⁻¹	$\delta_{ m H}$, J/Hz c	m/z (%)
20a	CN	N-	4-Cl·C ₆ H ₄	35	125	2218	1.96–2.02 (m, 4H, CH ₂), 2.92 (t, <i>J</i> 6.0, 4H, 2CH ₂), 3.45 (s, 2H, CH ₂), 3.60 (t, <i>J</i> 6.0, 4H, 2CH ₂), 6.46 (s, 1H, CH), 7.22 (d, <i>J</i> 8.8, 2H, 4.10), 7.41 (d)	354 (100)
20b	CN	N-	$4\text{-}\mathrm{CH}_3\text{-}\mathrm{C}_6\mathrm{H}_4$	40	115	2215	ArH), 7.41 (d, J 8.8, 2H, ArH). 1.94–2.05 (m, 4H, 2CH ₂), 2.40 (s, 3H, CH ₃), 2.91 (t, J 6.1, 4H, 2CH ₂), 3.26 (s, 2H, CH ₂), 3.51 (t, J 6.1, 4H, 2CH ₂), 6.47 (s, 1H, CH), 7.09 (d, J	334 (100)
20c	CN	◯ N−	3-Pyridyl	38	135	2212	8.8, 2H, ArH), 7.26 (d, J 8.8, 2H, ArH). 1.97–2.03 (m, 4H, 2CH ₂), 2.92 (t, J 6.0, 4H, 2CH ₂), 3.25 (s, 2H, CH ₂), 3.35 (t, J 6.0, 4H, 2CH ₂), 6.43 (s, 1H, CH), 7.36–7.60 (m, 2H, pyridyl), 8.58 (s, 1H, pyridyl), 8.65 (s, 1H, pyridyl)	321 (100)
20d	CN	N N-	2-Benzofuryl	41	110	2218	pyridyi). $1.99-2.07 (m, 4H, 2CH_2), 3.20 (t, J 6.1, 4H, CH_2), 3.59 (s, 2H, CH_2), 4.09 (t, J 6.1, 4H, 2CH_2), 6.54 (s, 1H, furyl), 6.77 (s, 1H, CH), 7.26-7.32 (m, 4H, ArH), 8.33-8.37 (m, 3H, pyridyl)$	454 (100)
20e	COOMe	SMe		30		1710	2.47 (s, 3H, SCH ₃), 2.88–2.99 (m, 4H, 2CH ₂), 3.58 (s, 2H, CH ₂), 3.98 (s, 3H, OMe), 7.1 (s, 1H, CH), 7.46 (d, <i>J</i> 8.26, 2H, ArH), 7.78 (d, <i>J</i> 8.26, 2H, ArH), 8.15 (s, 1H, triazolyl), 8.55 (s, 1H, triazolyl)	397 (100)
22a	CN	N-	4-BrC ₆ H ₄	40	230	2203	(1, 2, 0) (1, 2, 1, 4H, 2CH ₂), 3.53 (s, 2H, CH ₂), 3.63 (t, J 6.1, 4H, 2CH ₂), 6.62 (s, 1H, CH), 7.26–7.42 (m, 4H, ArH), 7.51–7.64 (m, 4H, ArH)	447 (100)
22b	CN	N-	3,4-Cl ₂ C ₆ H ₃	53	245	2205	(iii, 411, A11), $7.51-7.54$ (iii, 411, A11). 2.04 (t, J 6.1, 4H, 2CH ₂), 3.52 (s, 2H, CH ₂), 3.62 (t, J 6.1, 4H, 2CH ₂), 6.59 (s, 1H, CH), $7.18-7.32$ (m 4H ArH) $7.49-7.60$ (m 3H ArH)	437 (100)
22c	COOEt	ОН	4-ClC ₆ H ₄	20		1607	(iii, 411, A111), $(A2)^{-1,50}$ (iii, 511, A111). 1.26 (t, J 6.2, 3H, CH ₃), 3.55 (s, 2H, CH ₂), 4.16 (q, J 6.1, 2H, CH ₂), 7.1 (s, 1H, ArH), 7.26–7.31 (m, 4H, ArH), 7.39–7.44 (m, 2H, ArH), 7.74 (m, 2H, ArH).	396 (48.7)
24a	CN	N-	C ₆ H ₅	38	130	2201	1.88–2.06 (m, 4H, 2CH ₂), 3.31 (t, <i>J</i> 6.2, 4H, 2CH ₂), 3.62 (t, <i>J</i> 6.1, 4H, 2CH ₂), 6.51 (s, 1H, CH) 7 22–7 45 (m 5H ArH)	306 (100)
24b	CN	∭N−	4-ClC ₆ H ₄	36	170	2201	1.76-2.00 (m, 4H, 2CH ₂), 3.32 (t, J 6.1, 4H, 2CH ₂), 3.58 (t, J 6.1, 4H, 2CH ₂), 6.46 (s, 1H, CH), 7.22 (d, J 9.0, 2H, ArH), 7.45 (d, J 9.0, 2H, ArH), 7	340 (100)
24c	CN	N-	4-BrC ₆ H ₄	35	150	2203	1.72–1.99 (m, 4H, 2CH ₂), 3.33 (t, <i>J</i> 6.2, 4H, 2CH ₂), 3.57 (t, <i>J</i> 6.2, 4H, 2CH ₂), 6.45 (s, 1H, CH), 7.38 (d, <i>J</i> 8.8, 2H, ArH), 7.56 (d, <i>J</i> 8.8, 2H, ArH).	385 (100)
24d	COOEt	SCH ₃	4-ClC ₆ H ₄	30	Oil	1717	1.41 (t, <i>J</i> 7.17, 3H, CH ₃), 2.44 (s, 3H, SCH ₃), 3.31–3.43 (m, 4H, 2CH ₂), 4.43 (q, <i>J</i> 7.18, 2H, CH ₂), 7.1 (s, 1H, ArH), 7.46 (m, 4H, ArH).	364 (64)
^a Uncorr	ected. ^b From	n KBr discs/concentr	ated liquid. ^c From	CHCl ₃ .				

Acknowledgements

We thank ICMR and CSIR for their financial support.

References

- (a) D. S. Chemia and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals, Academic Press, New York, 1987;
 (b) K. Kobayashi, Nonlinear Optics of Organics and Semiconductors, Springer-Verlag, Tokyo, 1989;
 (c) P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers; Wiley-Interscience, New York, 1991.
- 2 C. Banzatti, P. Mellini and P. Salvadori, *Gazz. Chim. Ital.*, 1987, **117**, 259.
- 3 (a) A. Nakazato, K. Ohta, Y. Sekiguchi, S. Okuyama, S. Chaki, Y. Kawashima and K. Hatayama, J. Med. Chem., 1999, 42, 1076; (b) A. Nakazato, Y. Sekiguchi, K. Ohta, S. Chaki and S. Okuyama, Bioorg. Med. Chem., 1999, 7, 2027.
- 4 E. A. Boyle, F. R. Mangan, R. E. Markwell, S. A. Smith, M. J. Thomson, R. W. Ward and P. A. Wyman, *J. Med. Chem.*, 1986, 29, 894.
- 5 J. P. Dunn, N. A. Ackerman and A. J. Tomolonis, J. Med. Chem., 1986, 29, 2326.
- 1436 J. Chem. Soc., Perkin Trans. 1, 2002, 1426–1437

- 6 T. Nakib, M. J. Meegan, A. M. Looney and M. L. Burke, *Eur. J. Med. Chem.*, 1992, **27**, 971.
- 7 R. Noyori, Chem. Soc. Rev., 1989, 18, 187.
- 8 E. Weber, J. Mol. Graphics, 1989, 7, 12.
- 9 F. Mikes and G. Boshart, J. Chromatogr., 1978, 149, 455.
- 10 V. J. Ram, M. Verma, F. A. Hussaini and A. Shoeb, J. Chem. Res. (S), 1991, **98**.
- 11 V. Prelog, L. Ruzicka and O. Metzler, Helv. Chim. Acta, 1947, 30, 1883.
- 12 (a) G. Märkl and R. Fuchs, *Tetrahedron Lett.*, 1972, 46, 4691;
 (b) G. Märkl and R. Fuchs, *Tetrahedron Lett.*, 1972, 46, 4695.
- 13 J. Dale, A. J. Hubert and G. S. D. King, J. Chem. Soc., 1963, 73.
- 14 Y. Tobe, Ken-ichi Ueda, K. Kakuchi, Y. Odaira, Y. Kai and N. Kasai, *Tetrahedron*, 1986, 42, 1851.
- 15 L. W. Jenneskens, W. H. De Wolf and F. Bickelhaupt, *Tetrahedron*, 1986, 42, 1571.
- 16 (a) K. Müllen, W. Heinz, F. G. Klärner, W. R. Roth, K. Kindermann, O. Adamezak, M. Wette and J. Lex, *Chem. Ber.*, 1990, **123**, 2349; (b) G. W. Griffen and K. A. Horn, *Org. Prep. Proced. Int.*, 1985, **17**, 187.
- 17 M. Pomerantz, N. L. Dassanayke, T. R. McManus and C. H. Reynolds, J. Org. Chem., 1984, 49, 4029.
- 18 O. Boye, Y. Itoh and A. Brossi, Helv. Chim. Acta, 1989, 72, 1690.
- 19 D. Budac and P. Wan, Can. J. Chem., 1996, 74, 1447.

- 20 (a) R. M. Dodson and W. P. Webb, J. Am. Chem. Soc., 1951, 73, 2767; (b) M. D. Soffer, R. A. Stewart, J. C. Cavagnol, H. E. Gellerson and E. A. Bowler, J. Am. Chem. Soc., 1950, 72, 3704; (c) K. Yu. Koltunov, L. A. Ostashevskaya and I. B. Repinskaya, *Russ. J. Org. Chem.*, 1998, 34, 1796.
- 21 B. S. KirKiacharian and P. G. Koutsourakis, *Synth. Commun.*, 1993, 23, 737.
- 22 D. C. Pryde, S. S. Henry and A. I. Meyers, *Tetrahedron Lett.*, 1996, 37, 3243.
- 23 M. T. Bachute, C. H. Gill, K. N. Ganage and R. T. Bachute, *Indian J. Chem., Sect. B*, 1999, 38, 479.
- 24 R. C. Larock, Qingping Tian and A. A. Pletnev, J. Am. Chem. Soc., 1999, 121, 3238.
- 25 B. C. Ranu and U. Jana, J. Org. Chem., 1998, 63, 8212.
- 26 B. L. Jenson and S. V. Slobodzian, Tetrahedron Lett., 2000, 41, 6029.
- 27 W. M. Whaley and T. R. Govindachari, Org. React., 1951, 6, 74.
- 28 R. Bryan Miller and T. Tsang, Tetrahedron Lett., 1988, 29, 6715.
- 29 L. Helfer, Helv. Chim. Acta, 1924, 7, 945.
- 30 P. Cagniant and P. Cagniant, Bull. Soc. Chim. Fr., 1959, 1998.
- 31 R. Lesser and A. Mehrlander, Ber., 1923, 56B, 1642.
- 32 J. V. Braun and F. Zobel, Ber., 1923, 56B, 2142.
- 33 A. Ohno, T. Koizumi, Y. Ohnishi, G. Tsuchihashi, Jap Patent 7301077/1973 (Chem. Abstr., 1973, 78, 147802).
- 34 C. Banzatti, P. Mellini and P. Salvadori, *Gazz. Chim. Ital.*, 1987, **117**, 259.
- 35 C. G. Huang and P. Wan, J. Org. Chem., 1991, 56, 4846.
- 36 S. Auricchio, A. Citterio and R. Sebastiano, J. Org. Chem., 1990, 55, 6312.
- 37 D. F. Rane, R. E. Pike, M. S. Puar, J. J. Wright and A. T. McPhail, *Tetrahedron*, 1988, 44, 2397.

- 38 R. A. Conley and N. D. Heindel, J. Org. Chem., 1975, 40, 3169.
- 39 Crystal data for **8f**: $C_{29}H_{22}ClF_2N_3O_4$, M = 386, triclinic, $P\bar{1}$, a = 9.372(1) Å, b = 11.433(1) Å, c = 11.527(1) Å, $a = 66.83(1)^\circ$, $\beta = 79.60(1)^\circ$, $\gamma = 89.35(1)^\circ$, V = 1114.41(18) Å³, Z = 2, $D_c = 1.152$ g cm⁻³, μ (Mo-Ka) = 0.067 mm⁻¹, F(000) = 420.0, colorless rectangular crystal, size 0.30 × 0.20 × 0.075 mm, 4557 reflections measured ($R_{int} = 0.03$), 3794 unique, $R_w = 0.192$ for all data, conventional R = 0.08 [($\Delta I \sigma$)_{max} = 0.000] on F values of 1583 reflections with $I > 2\sigma(I)$, S = 1.039 for all data.
 - Crystal data for 14k: C₂₆H₂₉O₄N₃S, monoclinic, space group $P2_1/n$, a = 8.622(1) Å, b = 14.255(1) Å, c = 20.537(2) Å, $\beta = 95.83(1)^\circ$, V = 2511.1(4) Å³, Z = 4, μ (Mo-K α) = 0.17 mm⁻¹, $D_c = 1.269$ g cm⁻³, F(000) = 1016, 6078 reflections measured, 4412 unique data ($R_{int} = 0.0173$). R = 0.0511 for 3205 reflections with $I > 2\sigma(I)$ [$wR_2 = 0.1492$, (Δ/σ)_{max} = 0.000, S = 1.054, 312 parameters].
 - Unit cell determination and intensity data collection $(2\theta = 50^{\circ})$ for both **8f** and **14k** were performed on a Bruker P4 diffractometer at 293(2) K. The structure was solved by direct methods with refinement by full-matrix least-square methods on F^2 . Programs: XSCANS [Siemens Analytical X-ray Instruments Inc.; Madision, Wisconsin, USA 1996], SHELXTL-NT [Bruker AXS Inc.; Madision, Wisconsin, USA 1997]. Further details of the crystal structure investigation can be obtained form the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, UK CB2 1EZ. CCDC reference numbers 175565 and 182396.
- 40 R. Keese, R. K. Müller and T. P. Toube, *Fundamentals of Preparative Organic Chemistry*, 3rd edn., Ellis Horwood Limited, Chichester, 1982.